HLA expression: implications for immunotherapy

Aura Muntasell
IMIM- Hospital del Mar Medical Research Institute
Anti-tumor Immune response

1. Release of cancer cell antigens
2. Cancer antigen presentation
3. Priming and activation
4. Trafficking of T cells to tumors
5. Infiltration of T cells into tumors
6. Recognition of cancer cells by T cells
7. Killing of cancer cells

MHC class I (HLA)

Immune effectors
- Cytotoxic T lymphocytes
- NK cells

Chen DS, Immunity, 2013
Recognizing self from non-self, and altered self

- MHC: Major histocompatibility complex or Human leukocyte antigens (HLA)
- Surface glycoproteins displaying diverse peptides derived from internal proteins
- Polygenic family, polymorphic and co-dominantly expressed

MHC class I
- Regulate CD8 T cell and NK cell activation (cytotoxic)
- Associate to peptides generated in the cytosol
- Constitutively expressed by all nucleated cells
 - **MHC class Ia (HLA-A, -B, -C):** Highly polymorphic
 - **MHC class Ib (HLA-E, -G, -F):** low polymorphism

MHC class II (HLA-DR, -DP, -DQ)
- Regulate CD4 T cell activation (helper)
- Constitutive expression restricted to professional antigen presenting cells (DC, Ma, B cells)
- Load and display peptides generated in the endocytic pathway
 - Highly polymorphic.
HLA class Ia regulation of cytotoxic lymphocyte effectors

Groups of HLA class Ia
Peptide independent

Inhibit

Kill

HLA class I allele and peptide dependent

Tumor Foreignness
Aberrantly expressed proteins
Neoantigens

KIR family

TcR

Tumor cell

HLA-A

HLA-B

HLA-C

NK

T

Ignorance
HLA class Ib regulation of cytotoxic lymphocyte effectors

- HLA-E
- HLA-G

Inhibit Inhibit

CD94/NKG2A LILRB1/ILT2
Altered MHC phenotypes in tumors

N. Aptsiauri, Canc Res, 2013
Frequency of MHC class I altered expression

- Total HLA antigen loss
- Selective HLA class I allospecificity loss

HLA class Ia

HLA class Ib

M Campoli, Oncogene, 2008

HLA altered expression has been found in 60-90% of tumors depending on their histological type
Molecular defects underlying MHC class I altered expression in tumors

IRREVERSIBLE: Structural gene abnormalities

- **Chr.6:** Loss of Heterozygosity (LOH)
 - Mutations of MHC class I Heavy chain genes

- **Chr.15:** LOH and mutations in β2m gene

- IFN transduction pathway: JAK/STAT pathway blockade

REVERSIBLE: Regulatory defects

- Transcriptional Regulation: Coordinated down-regulation of HLA-A, -B, -C or APM
- Hypermethylation of HLA class I genes
- Oncogenic activation (HER2, c-myc, adenovirus): down-regulation of HLA class I genes

Adapted from Garrido F, IJC, 2010
Immunoselection of tumor variants with HLA class I alterations and immunotherapy

Immune modulatory mAbs (PD-1/PD-1L, CTLA-4, 4-1BB, OX40)
Adoptive T cell therapy
Vaccination

Adapted from Garrido F, IJC, 2010
Primary, adaptive and acquired resistance to cancer immunotherapy (PD-1, CTLA-4))

Sharma P, Cell, 2017
Marabelle A, Cancer Discovery, 2017
Gabriel Abril-Rodriguez and Antoni Ribas, Cancer Cell, 2017
The “cancer immunogram”

HLA class I expression as predictive biomarker of response to immunotherapy?

• Difficulty inherent to HLA polymorphism and multiple targetable checkpoints

<table>
<thead>
<tr>
<th>HLA Class I</th>
<th>Gene</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alleles</td>
<td>3,968</td>
<td>4,828</td>
<td>3,579</td>
<td>26</td>
<td>25</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Proteins</td>
<td>2,781</td>
<td>3,501</td>
<td>2,490</td>
<td>8</td>
<td>5</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Nulls</td>
<td>181</td>
<td>146</td>
<td>128</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Technique combination

• IHQ: Quantitative approach to analyse HLA-I expression in tumor cells. Combined with flow cytometry.
 mAb to broadly recognizing “all” HLA class Ia molecules (discriminating from HLA class Ib molecules)
• Identification of the specific molecular defects underlying HLA-I alteration (microdissection and RT-PCR, microsatellite analysis for LOH detection, DNA sequencing)
• Discrimination between reversible versus irreversible alterations to decide putative complementary therapies
Case A, x200

Case B, x200

HC10: free HLA-B, HLA-C heavy chains

Case C, x200

Dr. Federico Rojo
Thank you for your attention